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We have recently introduced a measure for nonstationarity using a recurrence time statistic to assess sta-
tionarity. In this paper we propose an extension of this method based on a detailed study of the statistics for the
case of stationary systems. We derive a simple scheme that allows us to estimate the effective number of
degrees of freedom relevant for this statistic. This substantially improves the statistical significance of the
method and can be used to improve the significance of various other nonlinear statistics.
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I. INTRODUCTION

Nonstationarity is a property of a dynamical system that is
usually regarded as an unwanted effect in time series analy-
sis. The most common way of dealing with a nonstationary
system is to cut the observed time series into short segments
during which dynamics of the system can be regarded as
approximately stationary. Often essential aspects of the dy-
namics remain uncovered since cuts are such that character-
istic time scales stretch over several segments. Furthermore,
evaluation of a characteristic measure may suffer from an
insufficient number of data points. The aim of characterizing
a dynamical system usually involves analyzing its temporal
evolution in state space. The reconstruction of the state space
of a stationary system and the identification of related states
is a common approach in nonlinear time series analysis and
represents a crucial step for these techniques. It has been
shown[1] that even for aD-dimensional deterministic sys-
tem that is driven byP slowly time-dependent parameters, a
time delay embedding ofm.2sD+Pd dimensions exists that
is sufficient to reconstruct essential aspects of deterministic
dynamics.

In an earlier publication[2], we have introduced theloss
of recurrence l* to estimate nonstationarity in a nonseg-
mented time series. The method is based on the analysis of
time distances between recurrences. The deviation of the dis-
tribution of these distancesfmeas from a distribution of dis-
tancesfexp that is expected under stationary conditions al-
lows us to measure nonstationarity. In this context, a system
is regarded as stationary if the time index of a neighbor of a
point xW is independent from that ofxW. For nonstationarity we
expect a deviation: a recurrence is more likely after a short
time, when conditions do not yet have changed. We refer to
this phenomenon as loss of recurrence. As a measure for the
deviation between the observedfmeasand the expected dis-
tribution fexp we have proposed the medianm of fmeas[2],
which is expected to bemexp=0.5 for a stationary system.
The significance level of the calculated medianmmeas was
specified using the incomplete beta functionImsN/2 ,N

−N/2+1d with Ipsk,n−k+1d.o j=k
n s n

j
dpjs1−pdn−j. Under the

assumption that the measured distributionfmeas consists of
independent samplesIm provides the statistical significance
of mmeasand thus ofl* . This condition is not completely met,
particularly not for oversampled time series, which can lead
to spuriousdetections of nonstationarity. The median of the
distributionfmeasas a discriminating statistic is a rather ro-
bust measure which weakens the effect of dependent samples
at the expense of the discriminative power of the test. Fur-
thermore, we have shown the observation time to be a pa-
rameter of crucial importance for the analysis of stationarity.
Even stationary systems may lead to spurious detections of
nonstationarity if the observation time is smaller than the
system’s characteristic time scales.

Thus, there are two forms of spurious detection of non-
stationarity:measurement nonstationarity[3] due to an insuf-
ficient observation time andstatistical nonstationaritydue to
an underestimation of statistical fluctuations. The only way
to cope with measurement nonstationarity is to increase the
observation time. In this paper we pay particular attention to
the latter type of nonstationarity, by estimating a confidence
interval for our test statistic, i.e., the loss of recurrence, in
order to improve its statistical significance.

To deal with oversampled data, reasonable correction
schemes have already been proposed[4–6]. These methods,
however, are insufficient to correctly determine the statistical
significance of a given measure since they do not compre-
hensively consider the effects concerning correlated or re-
dundant information for a statistical test. One way to esti-
mate a reliable confidence interval is a Monte Carlo
simulation using a number of realizations of time series ob-
served from a model system, another way is to measure a
large number of time series from the dynamical system to be
studied. The first alternative is very time consuming and the
second way requires stationarity. Furthermore, it might be
impossible to repeat a measurement several times. Note that
the estimation of statistical fluctuations on the basis of de-
pendent variables is not only a problem for the loss of recur-
rence, but is also inherent to other measurements.

This paper is organized as follows. In Sec. II A we pro-
pose an extension to our method[2] to correctly estimate the
significance of a measured value for nonstationarity that uses*Electronic address: christophrieke@yahoo.com
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the Kolmogorov-Smirnov test to discriminate betweenfmeas
and fexp. In Sec. II B we discuss the statistical significance
of this test and its dependence on the correlation of vectors
and nearest neighbors in reconstructed state space. Further-
more, we introduce a correction scheme and investigate its
dependence on the embedding parameters, on intrinsic pa-
rameters of our measure such as the number of nearest neigh-
bors, and on characteristics of the time series such as the
autocorrelation function(Secs. II C and III). The verification
for stationary and linear processes and application to station-
ary and nonstationary model systems is given in Sec. IV,
where we demonstrate the generality of the correction
scheme by applying it to the nonlinear local prediction error,
followed by a conclusion in Sec. V.

II. METHODS

A. Loss of recurrence

The reconstruction of a state space from an observed time
serieshxi ; i =1, . . . ,Mj is usually achieved by the time delay
embedding[8] leading to a set ofm-dimensional vectorsV
=hxWn;n=1, . . . ,Nj with xWn=sxn,xn+t , . . . ,xn+sm−1dtd, with m

and t chosen appropriately. For each reference vectorxWr
PV, let UksxWrd=hxWnr

i ji=1,. . .,k denote the set ofk nearest vec-
tors, with distance defined by the maximum normixWn
−xWrimax=maxi=0,. . .,m−1uxn+i·t−xr+i·tu. Let nr

i denote the time
index of theith nearest neighborxWnr

i of the reference vector
xWr. In the case of stationarity, the time index of a nearest
neighbornr

i is a priori independent from that of the reference
r. Let l r

i = unr
i −r u denote the time lag betweenxWr and its ith

neighbor. Assuming time translation invariance the expect-
ancy value of the mean time lag is[2]

Esl rd =
N

2
−

sr − 1dsN − rd
N − 1

. s1d

Following Ref. [4] we exclude neighboring vectors with
time lagsl less than or equal to the decorrelation timet. Let
fN,r,tsld denote thea priori expected frequency distribution
of the time lagl r of the nearest neighbor under the assump-
tion that for a stationary system each vector(exceptxWr itself)
has the same probability to be found in the neighborhood of
xWr. The distribution functionFN,r,tsld=ol8=1+t

l fN,r,tsl8d is the
a priori probability that the observed mean time distance is
less than or equal tol

FN,r,tsld =5
l − t

N − 1 − r − t
if t , l ø N − 1 − r; r ø t

2
l − t

N − 2t − 1
if t , l ø r; t , r ø

N − 1

2

l − t + r − t

N − 2t − 1
if r , l ø N − 1 − r; t , r ø

N − 1

2

2
l − t

N − 2t − 1
if t , l ø N − 1 − r;

N − 1

2
, r , N − t − 1

l − t + N − r − 1 − t

N − 2t − 1
if N − 1 − r , l ø r;

N − 1

2
, r , N − t − 1

l − t

r − t
if l ø N − 1 − r − t; r ù N − t − 1.

s2d

Since shorter time distances are more likely than longer
ones, the frequency functionsfN,r,tsld are skewed left sided
[cf. Fig. 1(a)], and thus the probability ofl r øEsl rd is greater
than 0.5, i.e.,FN,r,tsEsl rddù0.5, even for time series with
time lags distributed according tofN,r,tsld.

In order to solve this problem we map the observed mean
time distance to the intervalI =f0,1g using the distribution
function FN,r,tsld. For the stationary case, the ranks, i.e., the

transformed samplesl̃ =FN,r,tsld are uniformly distributed in

I and independent ofN and r, and the probability ofl̃ r
ø0.5 is equal to 0.5 by construction(cf. Fig. 1). For the
nonstationary case the recurrence of state space vectors is

reduced for largel, since the neighborhood ofxWr depends on
the time indexr, and the indices of the neighboring vectors
hnr

i j are clustered aroundr. Thus, the observed time distances
l r
i are on the average smaller than expected. This is also the

case for the transformed variablesl̃ sinceFsld is a strictly
monotonic increasing function. The distribution of all trans-

formed time lagsfmeassl̃d reflects the(non)stationarity of the
system in the sense that stationarity leads to a uniform dis-

tribution, whereas for nonstationarity lower values ofl̃ r will
accumulate and therefore higher values are reduced. In order
to quantify this reduction, we calculated in Ref.[2] the me-
dian mmeasof fmeas. The distributionsfmeasand fexp, how-
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ever, may differ even thoughmmeas matches the expected
medianmexp=0.5. In this case, the median fails as a discrimi-
nating statistic.

In order to improve the sensitivity for a deviation offmeas
from fexp we now use the well-known Kolmogorov-Smirnov
(KS) test. This statistic is defined as the maximum value of
the absolute difference between two cumulative distributions

[here,Fmeassl̃d andFexpsl̃d= l̃]:

Dmeas= max
l̃

uFmeassl̃d − Fexpsl̃du. s3d

The significance level, i.e., the probability thatD.Dmeas, for
L=N k independent samples is approximately given by

PL
KSsDmeasd = QKSSFÎL + 0.12 +

0.11
ÎL

GDmeasD , s4d

with the functionQKSsld=2o j=1
` s−1d j−1e−2j2l2

scf. Ref. f7g,
and references thereind.

B. Correction schemes

The requirement of statistical independence of allL
samples is not completely met for the set of transformed

variableshl̃ r
i jr=1,. . .,N

i=1,. . .,k . In particular, for oversampled data, sev-
eral correction schemes have been proposed. In Ref.[4] a
decorrelation correctionfor computing the correlation di-
mension was introduced by requiring a minimum time lag
between a referencexWr and its neighboring vectorsxWn. We
refer to this scheme as reference-neighborsRNd correction.
This correction scheme was further extended in Ref.[5] to
correlated neighboring vectorsxWn andxWn8 of the same refer-
ence, which we refer to as neighbor-neighborsNNd correc-
tion. A time lag t for the correction schemes is often esti-
mated using the autocorrelation function or the mutual
information [9]. The lag t could also be enlarged tot8= t
+sm−1dt to ensure independent vector components leading
to an exclusion of neighboring vectors. Another correction
scheme was proposed in afalse nearest strandsmethod[6]
to estimate an optimum embedding dimension. This scheme
minimizes redundant information in successive pairs of ref-
erence and true neighbors due to temporal correlation in or-

der to enhance the proportion of false neighbors. Each strand
of successive pairs is identified by its initial pair.

When analyzing the statistical dependencies of a set of
reference vectors and their nearest neighbors, we are faced
with yet another type of dependencies: In the case of the loss
of recurrence, for instance, the set of allL time distances
contains redundant information. These occur between recur-
rence times associated with successive reference pointsxWr
and xWr+1 (see Fig. 2), but also more generally. LetLr
=hl r

1, . . . ,l r
kj and Ls=hls

1, . . . ,ls
kj denote the sets of time dis-

tances between reference vectorsxWr andxWs and their particu-
lar neighboring vectorsUksxWrd=hxWnr

1, . . . ,xWnr
kj and UksxWsd

=hxWns
1, . . . ,xWns

kj, respectively. These sets contain redundant in-
formation, if xWr and xWs are close so thatUksxWrd and UksxWsd
overlap. To minimize the redundancy we may choose inde-
pendent reference vectorsr =1,t8 ,2t8 ,3t8 , . . . or even halve
or quarter the data. This preselection, however, might reduce
the number of independent variables too much leading to an
insufficient sampling of the systems’ dynamics, which may
result in unforeseen problems and pitfalls. The correction
scheme proposed in Ref.[6], however, does not completely
correct redundant information to provide statistical indepen-
dence of all time lags. In addition, there exists a mutual
neighborhood of a reference vectorxWr and its neighboring
vectors, e.g., ifxWr PUksxWnr

i d, then l r
i is equal tolnr

i
j for one j

P h1, . . . ,kj. Thek+1 setsLr ,Lnr
1, . . . ,Lnr

k, each consisting of
k time distances obtained fromxWr and each neighboring vec-
tor xWnr

jP UksxWrd as reference, will altogether contain at leastk
independent time distances. In this case, including another
neighbor would not provide additional information.

In order to cope with redundant information within allL
time distances we here propose a correction ofL to approxi-
mate the number of the degrees of freedom of the statistical
test used in this study, i.e., the KS test. The maximum num-
ber of all, not necessarily independent, time distances isL
=k N. Due to an overestimated number of degrees of free-

FIG. 1. (a) A priori expected frequency distributionsfN,r,tsld
and (b) distribution functionsFN,r,tsld, respectively, forN=104, r
P h1,2000,7000j, and t=100 under the assumption of a stationary
system.

FIG. 2. Relation of neighboring vectors of two successive and
correlated reference vectorsxWr andxWr+1 with xW =sx1,x2d.
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dom, the empirical sizep of the discriminative statistic is
larger than the nominal sizea. As a lower bound for a cor-
rected number of independent variables we proposeLmin
=L / sk+1dft+sm−1d ·tg. For the particular case of the KS
test, we therefore replace the number of degrees of freedom
L of the discriminative statistic byLmin:PLmin

KS sDmeasd. In this
way the empirical size is smaller than the nominal size.

C. Investigation of dependencies of the significance on
parameters

In order to examine the statistics of the proposed test we
use simple stationary stochastic time series. These were gen-
erated by moving average processesMsQd defined byxn

=1/Qoi=1
Q hn−i with Qù1 andhn−i denoting independent and

identically distributed Gaussian random variables[hn−i
PNsk ,sd with mean k=0 and standard deviations=1].
Ms1d is the uncorrelated Gaussian random process. In the
following we set the time delayt=1.

Figure 3 shows the influence of different correction

schemes onfmeassl̃d for time seriesMs1d and Ms10d with
N=104 data points, embedding dimensionsm=1 andm=10
andk=4 neighboring vectors calculated(1) without any cor-
rection scheme,(2) with NR correction,(3) with NR and NN
corrections. In Fig. 3(b1) the frequency of short distances is
increased due to closeness of subsequent vectors in state

space. The variance of the distributions increases with both
m and the orderQ of the MsQd process caused by an in-
creased correlation of the variables. RN correction reduces
the increased frequency in the first bin of the histogram par-
ticularly for m=10 whereas the NN correction reduces the
variance of the distributions. The effect of the latter is mar-
ginal for k=4 neighboring vectors, but becomes more pro-
nounced for an increased number of neighbors. In order to
quantify the influence of these correction schemes, we esti-
mated the empirical sizep using 1000 realizations of the
processesMs1d andMs10d (cf. Table I).

Without any correction schemes, the empirical sizep ex-
ceeds the nominal sizesa=0.05d for the KS testPL

KSsDmeasd
even for the Gaussian random processMs1d with embedding
dimensionm=1. Furthermore,p tends towards higher values
with increasingm and increasingQ. Correction schemes re-
duce the empirical sizep, which, however, remains well
abovea. After correction of the number of variables toLmin,
the empirical sizep tends to zerospø10−3d which is mark-
edly lower thana. Thus, the number of false rejections is
diminished, the discriminative power, however, might be re-
duced as well. The numberLmin is an estimation of a lower
bound of the number of degrees of freedom leading top
øa. The number of all variablesL=Nk on the other hand
represents an estimation of the upper bound with an empiri-
cal sizep greater than or equal to the nominal sizespùad.
The performance of the discriminative statistics is optimal

FIG. 3. Histograms ofl̃ for time seriesMs1d (left column) and Ms10d (right column) with k=4 neighboring vectors for embedding
dimensionsm=1 andm=10 and different correction schemes. From top to bottom:(1) without correction,(2) with RN-correction, and(3)
with RN and NN corrections.
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when the theoretical distribution ofPLef f

KS sDmeasd matches the
empirical distribution functionFsDmeasd, i.e., the empirical
size p matches the nominal sizeasp<ad. This requirement
defines the effective number of degrees of freedomLef f,
which we expect to satisfyLminøLef føL.

D. Estimation of the effective number of degrees of freedom
Leff

A Monte Carlo simulation allows us to estimate the effec-
tive number of degrees of freedomLef f. In this way we fit the
theoretical distribution functionPL

KSsDmeasd of the KS test to
the empirical distribution functionFKSsDmeasd of the Monte
Carlo simulation via the number of degrees of freedomL.
The distance of both distributions is defined similar to the
KS test by

DsLd = max
Dmeas

uFKSsDmeasd − PL
KSsDmeasdu. s5d

Finally we define an estimateL̂ef f of the effective number
of degrees of freedomLef f by

DsL̂ef fd = min
L

hDsLdj. s6d

Figure 4 showsDsLd for Ms1d andMs10d time series with
N=104 and for embedding dimensionsm=1 andm=10. The

global minimumL̂ef f of DsLd depends on the autocorrelation
function of each process and more obviously onm. Estimates
of the global minimum are displayed in Table II.

Figure 5 confirms the closeness of the theoretical fre-
quency functionp

L̂ef f

KS sDmeasd of the KS test with the empiri-

cal frequency distributionfKSsDmeasd.
In order to provide an approximationLq.Lef f, we focus

on the dependencies ofLef f on the embedding dimensionm,
the number of neighboring vectorsk, and the decay of the
autocorrelation functionrsnd characterized by minnhn :rsnd
ørs0d /e2j as an appropriate value for the decorrelation time
t. Defining

qef f =
L

Lef f
, s7d

we expectqef f to be independent ofN sinceLef f~N.

III. RESULTS

In order to examineqef fsm,k,td we estimateq̂ef f=L / L̂ef f

for 200 realizations each ofMsQd processes withQ
P h1,2,5,10,20,50,100j. Furthermore we varied the em-
bedding dimensionm=intsÎ2nd with n=1, . . . ,14 and the
number of nearest neighborsk=1,2,3,4 atN=104.

Figure 6 shows a selection of the estimated correction
factors q̂ef f in dependence onm. The results of these simu-
lations reflect the dependencies of the effective number of
degrees of freedomLef f~1/qef f on t, m, andk. The follow-
ing simple relationship:

qsm,k,td = 0.5 ·Îs1 + kdsm2 + td, s8d

approximatesqef f which is indicated by linessk=1,2,4d in
Fig. 6. Equations8d is chosen such thatqsm,k,tdùqef f, i.e.,

TABLE II. Number of degrees of freedomLmin, L̂ef f, andL.

Lmin L̂ef f L

Ms1d Ms10d Ms1d Ms10d Ms1d Ms10d
m=1 8000 800 29650 28030 40000 40000

m=10 800 421 8660 6580 40000 40000

TABLE I. Empirical sizep using the KS statistics at a nominal
size of a=0.05 from 1000 realizations for each processMs1d and
Ms10d with N=104, embedding dimensionm=1 andm=10 andk
=5 nearest neighbors.p was estimated using different correction
schemes, i.e., without RN correctionst8=0d and with RN correction
st8=20d as well as without and with NN-correction. The minimum
time lag oft8=20 is greater than or equal to the sum of the embed-
ding dimension and the decorrelation time of theM process.

m 1 10

RN correction 0 20 0 20

NN correction 0 0 20 0 0 20

Ms1d 0.13 0.151 0.134 0.811 0.817 0.808

Ms10d 0.267 0.16 0.168 0.979 0.934 0.911

FIG. 4. DistanceDsLd between the empirical distribution of the
KS testFKSsDmeasd and the theoretical distribution function in de-
pendence on the number of degrees of freedomL. The distribution
function FKSsDmeasd from (a) the Ms1d process and(b) the Ms10d
process were estimated both with 200 realizations using embedding
dimensionsm=1 andm=10, k=4 nearest neighbors, andN=104

data points leading toL=43104.
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the empirical size is less than or equal to the nominal size
spøad. Note that even for theMs1d process at an embed-
ding dimension ofm=1 the estimated divisorq̂ef f is .1.
This effect is due to a mutual neighborhood of the reference
and its neighboring vectors, since each vector in state space
is an independent realization of aNs0,1d process. This ap-
proximation defines the approximated effective number of
degrees of freedomLq=L /qsm,k,td.

As a verification of our ansatz[Eq. (7)] we also estimated
the dependence ofqef f on NP53103, . . . ,105, which turned
out to be approximatively constant as expected. This remark-
able effect leads to the following conclusion: Although the
correction scheme proposed[6] is reasonable in a false near-
est neighbors method, identifying a strand of successive pairs
of references and nearest neighbors by its initial pair does not
correct the number of degrees of freedom sufficiently.

The decreasing length of strands with increasingN is in
contrast to the fact that the effective number of degrees of
freedom is proportional toN. Instead, the approximation of
the number of degrees of freedom using a divisorqef f im-
proves the statistical significance for the measure such as the
loss of recurrence.

IV. APPLICATION TO STATIONARY AND
NONSTATIONARY NONLINEAR MODEL SYSTEMS

Up to now we have demonstrated the statistics ofDmeason
stationary, linear stochastic processes. As a next step we will
apply this method to nonlinear, stationary, and nonstationary
model systems in order to validate its empirical size and, in
particular, to examine its discriminative power.

The first nonlinear deterministic model is a generalization
of the baker’s map(cf. Ref. [10]):

if vn ø a:
un+1 = bun

vn+1=vn/a,
s9d

if vn ù a:
un+1=0.5 +bun

vn+1=svn − ad/s1 − ad.
s10d

In the following we takea=0.4. We obtain a stationary
system if b=0.5 sB1d, and two nonstationary systems by
slowly varying b according tob=0.4+s0.2/Mdn sB2d and

b=0.2+s0.6/Mdn sB3d, respectively, with M =105. We
record the sumwn=un+vn, subtract the running mean, and
normalize to running unit variance within an interval of 20
data points.

As a second nonlinear deterministic model system, we
examine the Lorenz system[11]:

dx

dt
= asy − xd,

dy

dt
= rx − y − xz,

dz

dt
= xy− bz, s11d

with a=10,b= 8
3. For 25ø r ø90 this system exhibits chaotic

behavior. We calculate data vectorssx,y,zd for fixed time

FIG. 5. Empirical frequency distributionfKSsDmeasd of 200 re-
alizations of theMs10d process estimated withN=104, m=10, and

k=4 and the theoretical frequency functionspKSsLd, pKSsL̂ef fd, and
pKSsLmind.

FIG. 6. Estimated divisorq̂ef f (symbols) in dependence on the
embedding dimensionm for different numbers of nearest neighbors
kP h1,2,4j and different processes:(a) Ms1d, (b) Ms10d, and (c)
Ms50d. Approximationqsm,k,td of qef f using Eq.(8) added as dif-
ferent lines, solidsk=1d, dashedsk=2d, and dottedsk=4d.
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intervals ofDt=0.01. In the following, we will focus on the
x-componenthxnj. The stationary time series is generated
with r =25 sL1d and the nonstationary time series are gener-
ated by slowly varying the parameterr =25+s25/Mdn sL2d
and r =25+s65/Mdn sL3d, respectively, forM =105.

First of all we choose an appropriate embedding dimen-
sion for the systems by analyzing the dependence ofDmeas
on m (cf. Fig. 7). An insufficient embedding dimension leads

to false recurrences and thus distortsfmeassl̃d to a uniform
distribution. For stationary systemsDmeasis almost indepen-
dent of m. Nonstationary systems exhibit a nonmonotonic
dependence ofDmeason m. A local maximum ofDmeascan be
observed at values coinciding with the lower bound of em-
bedding dimensions as suggested in Ref.[1]. For the Lorenz
systemDmeas increases over a large range ofm.

As a next parameter we investigate the observation time
by varying the number of data pointsN, in order to examine
the time scales of the dynamic. Figure 8 shows the empirical
frequency distributionfsDmeasd for different stationary pro-
cesses and systems at different observation times. For time
series Ms10d and B1, the empirical frequency function
matches the respective theoretical frequency function
pKSsLqd with Lq degrees of freedom. For theMs10d process,
fsDmeasd matches the theoretical functionpLq

KS at all investi-
gated observation times(cf. Fig. 8). Furthermore, our correc-
tion scheme is validated even for the stationary baker’s map
sB1d. In Fig. 9 empirical distributionsfsDmeasd are repre-
sented by their mean and standard deviation. The confidence
interval CasLd of a one-sided test witha=0.1 and with cor-
rected number of variables[C0.1sLqd (lower lines) and
C0.1sLmind (upper lines)] are also included. The empirical dis-
tribution fsDmeasd of the stationary stochastic processes and
the stationary baker’s map confirmC0.1sLqd as a reliable con-

fidence interval. In contrastLmin underestimates the number
of degrees of freedom.

Figure 9 shows further that the distributions ofDmeas at
N=104 for the nonstationary systems overlap withDmeasfor
the respective stationary system. A discrimination is impos-
sible. With increasing observation time,Dmeas increases for
the nonstationary systemssB2,B3,L2,L3d and decreases for
the respective stationary systemsB1,L1d. B3, for instance, is
identified as nonstationary forNù23104 using the confi-
dence intervalC0.1sLqd.

For the stationary Lorenz systemL1, there is a significant
deviation betweenpLq

KSsDmeasd and fsDmeasd. Furthermore,
C0.1sLqd is smaller than the mean offsDmeasd for all N. Thus,
Lq overassesses the number of degrees of freedom, whereas
C0.1sLmind appears to be more reliable. This could be attrib-
uted to an insufficient observation time, although Fig. 9
shows no convergence ofC0.1sLqd with m+2s of fsDmeasd.
On the other hand,t might be underestimated due to the
finite number of data points used for the autocorrelation es-
timate.

In order to obtain a better estimate of the autocorrelation
functionrsnd and thus oft we increased the observation time

FIG. 7. DistanceDmeasin dependence on the embedding dimen-
sion m with k=4 nearest neighbors andN=105 data points, for one
realization of stationarysB1d and nonstationarysB2,B3d baker’s
map (upper part) and stationarysL1d and nonstationarysL2,L3d
Lorenz system(lower part).

FIG. 8. Empirical frequency distributionfKSsDmeasd of 500 re-
alizations of theMs10d process withm=10, the stationary baker’s
map sB1d with m=6, and the stationary Lorenz systemsL1d with
m=24 all estimated usingk=4 nearest neighbors and different ob-
servation timesN=103, N=104, andN=105 (steps). The theoretical
frequency functionspKSsLqd are depicted as different lines.
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up to N=107 (cf. Fig. 10). The differences between the esti-
mates for different data lengthN reflect the effect of an in-
sufficient observation time. The first zero crossing of the
autocorrelation function strongly depends onN. Even atN
=107, rsnd appears to be estimated incompletely. The ap-
proximated effective number of degrees of freedomLq
=L /qsm,k,td is thus overestimated, particularly at small ob-
servation times sincet depends onN. The observed nonsta-
tionarity of the Lorenz systemL1 is caused by an insufficient
observation time and might be classified as measurement

nonstationarity. Thus, in order to discriminate between sta-
tionary and nonstationary systems, both a reliable confidence
interval and an adequate observation time are required.

In the following we apply our proposed correction scheme
to the local nonlinear mean prediction errorP (cf. Ref. [3]).
P represents the average over many individual errorsPr and
thus is likely to be Gaussian distributed. The empirical er-
rors, however, are not expected to be independent, which
complicates the estimation of the variance ofP (cf. Ref.
[10]). Thus we use our correction scheme to improve its
estimation.

The mean prediction errorP is defined as the mean of the
set of all individual prediction errorsPr for each reference
xWr:

P =
1

N − h
o
r=0

N−1−h

Pr , s12d

where the individual error is the difference of the future of
the reference and the future of its nearest neighborxWnr

:

Pr = U xWr+h − xWnr+h

m
U , s13d

h denotes the prediction horizonshereh=20d. The standard
deviation sP of the frequency distribution of the indi-
vidual prediction errorsPr is given by

sP =Î 1

N − h
o
r=0

N−1−h

Pr
2 − P2. s14d

According to the central limit theorem, the meanP of L
independent variables is approximately Gaussian distributed
with standard deviationsP /ÎL. We now defined as the
relative error of the mean

d =
sP

PÎL
, s15d

which is the standard deviationsP /ÎL normalized by the
mean. The number of all individual errors isL=sN−hdk.
We use our correction scheme to improve the significance
of d. In order to verify the estimated and correctedd, we
simulate the standard deviation ofP from 200 realizations
of the stationary dynamical systems analyzed before
sB1,L1d.

Figure 11 shows a comparison ofd obtained both from a
Monte Carlo simulation and from an estimation usingLmin,
Lq, andL as different numbers of degrees of freedom. When
compared to the Monte Carlo simulation, the relative error of
the meand with Lq degrees of freedom exhibits a reliable
estimate for the systemB1. The uncorrected relative error is
by far too low. For the systemL1, the number of degrees of
freedomLq turned out to be overassessed, similar to the re-
sults for the loss of recurrence as discussed previously. For
the nonstationary systems we expect similar relative errors
when compared to the respective stationary system. The ab-
solute mean prediction errorP, however, might be increased
due to the change of the dynamics.

FIG. 9. Dmeasin dependence on the observation timeN (in data
points) for (a) stochastic processesMs1d, Ms10d, and Ms50d; (b)
stationarysB1d and nonstationary baker’s mapssB2 andB3d, and
(c) stationarysL1d and nonstationarysL2 andL3d Lorenz system.
Mean of fsDmeasd as points and 2s in error bars, estimated from
500 realizations with embedding parametersm=10 (a), m=6 (b),
andm=24 (c) with k=4 neighboring vectors. The confidence inter-
val C0.1sLd of the theoretical distributionspKS for Lq and Lmin as
number of degrees of freedom at a significance levela=0.1 for a
one-sided test is plotted as lines.

FIG. 10. Autocorrelation functionrsnd of the x component of
the Lorenz system using different lengthsN of the time series.
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V. CONCLUSION

We have discussed in detail the statistical significance of
our recently proposed technique for measuring nonstationar-
ity from unpartitioned time series. To assess correctly its sig-
nificance we have introduced a scheme which allows us to
estimate the effective number of degrees of freedom. We

have demonstrated the effects on different parameters, i.e.,
the embedding dimension and the autocorrelation of a time
series of the observed system. Furthermore, we have verified
the statistical dependence of our correction scheme on the
number of data points of the observed time series. A simple
recipe allows us to approximate this correction scheme in
order to provide a reliable confidence interval. The concept
of estimating the effective number of degrees of freedom for
a statistic of reference vectors and their neighboring vectors
in reconstructed state space is, however, more general, which
we exemplified using the local nonlinear prediction error as
another measure.

The reconstruction of the state space combined with a
nearest neighbor algorithm is a widespread concept in non-
linear time series analysis. Thus a corrected number of vari-
ables as number of degrees of freedom improves the confi-
dence interval of the statistical fluctuations for other
nonlinear statistics. Finally, our method allows us to deter-
mine a suitable observation time, to trace characteristic time
scales, and to quantify nonstationarity in observed systems.
Further studies are underway which apply our improved sta-
tistical test to a variety of time series from different physical
models(see, e.g., Ref.[12]) and which aim to extent prelimi-
nary findings obtained from experimental data[13]. A crucial
dependence on the observation time for detection of nonsta-
tionarity of nonlinear model systems still remains, i.e., the
observation time should be sufficient to cover all essential
time scales of the system.

ACKNOWLEDGMENTS

We thank Peter David and Peter Grassberger for valuable
comments in earlier versions of this manuscript. This work
was supported by the Deutsche Forschungsgemeinschaft.

[1] R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Phys.
Rev. Lett. 84, 4092(2000).

[2] C. Rieke, K. Sternickel, R. G. Andrzejak, C. E. Elger, P.
David, and K. Lehnertz, Phys. Rev. Lett.88, 244102(2002).

[3] H. Kantz and T. Schreiber,Nonlinear Time Series Analysis
(Cambridge University Press, Cambridge, 1997).

[4] J. Theiler, Phys. Rev. A34, 2427(1986).
[5] J. Farmer and J. Sidorowich, inEvolution, Learning and Cog-

nition, edited by Y.-C. Lee(World Scientific, Singapore, 1989),
pp. 277–330.

[6] M. B. Kennel and H. D.I. Abarbanel, Phys. Rev. E66, 026209
(2002).

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in C(Cambridge University Press,

Cambridge, 1992).
[8] F. Takens, inDynamical Systems and Turbulence, edited by D.

A. Rand and L.-S. Young(Springer-Verlag, Berlin, 1980), Vol.
898, pp. 366–381.

[9] A. M. Fraser and H. L. Swinney, Phys. Rev. A33, 1134
(1986).

[10] T. Schreiber, Phys. Rev. Lett.78, 843 (1997).
[11] E. Lorenz, J. Atmos. Sci.20, 130 (1963).
[12] A. Witt, J. Kurths, and A. Pikovsky, Phys. Rev. E58, 1800

(1998).
[13] C. Rieke, R. G. Andrzejak, F. Mormann, T. Kreuz, P. David, C.

E. Elger, and K. Lehnertz, IEEE Trans. Biomed. Eng.50, 634
(2003).

FIG. 11. Relative statistical error of the nonlinear local predic-
tion error in dependence on the number of data pointsN for systems
sB1d andsL1d. Errorsd were calculated using 200 realizations of a
Monte Carlo simulation for each observation time(empty circles).
Estimated errord with Lq degrees of freedom(solid circles) and
with Lmin, respectively,L as number of degrees of freedom(error
bars).

IMPROVED STATISTICAL TEST FOR… PHYSICAL REVIEW E 69, 046111(2004)

046111-9


