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Improved statistical test for nonstationarity using recurrence time statistics
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We have recently introduced a measure for nonstationarity using a recurrence time statistic to assess sta-
tionarity. In this paper we propose an extension of this method based on a detailed study of the statistics for the
case of stationary systems. We derive a simple scheme that allows us to estimate the effective number of
degrees of freedom relevant for this statistic. This substantially improves the statistical significance of the
method and can be used to improve the significance of various other nonlinear statistics.
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. INTRODUCTION -N/2+1) with 1(k,n—k+1) ==, (?)pi(1-p)™J. Under the

Nonstationarity is a property of a dynamical system that isassumptlon that the measured distributifigeas cOnsists of

usually regarded as an unwanted effect in time series anal jndependent samplds, provides the statistical significance

sis. The most common way of dealing with a nonstationar f imeasand thus of . This condition is not completely met,

system is to cut the observed time series into short segmen%rt'cu!arly not folr oversampled 'tlme Series, wh|ch can lead
%0 spuriousdetections of nonstationarity. The median of the

during which dynamics of the system can be regarded a istribution ¢neas@s a discriminating statistic is a rather ro-

approximately stationary. Often essential aspects of the dy- :
namics remain uncovered since cuts are such that charact rL—]St measure which weakens the effect of dependent samples

istic time scales stretch over several segments. Furthermor t;::ﬁ;;(psvr;si:\gh;gﬁgr{?éngg\slgrsgg\é enr tci’rfnteh(taot%se}a':u;-
evaluation of a characteristic measure may suffer from a ' b

insufficient number of data points. The aim of characterizingramEter of crucial importance for the analysis of stationarity.

: . L ,Even stationary systems may lead to spurious detections of
a dynamical system usually involves analyzing its tempora

evolution in state space. The reconstruction of the state spa@g nstat'|0nar|ty i the_ opservatlon time is smaller than the
stem’s characteristic time scales.

of a stationary system and the identification of related state® h h f f . d . ¢

is a common approach in nonlinear time series analysis an T us, t _ere are two forms of spurious detection of non-
represents a crucial step for these techniques. It has be atlonarlty.megsurgment ”0”?@“0””@1 dge to an insuf-
shown[1] that even for aD-dimensional deterministic sys- icient observation time anstatistical nonstationaritylue to
tem that is driven by slowly time-dependent parameters, N underestimation of statistical fluctuations. The only way

time delay embedding ah>2(D+P) dimensions exists that to cope \_Nlth measurement nonstationarity is to increase the
. . . .—._.0observation time. In this paper we pay particular attention to
is sufficient to reconstruct essential aspects of deterministi

dynamics. fhe latter type of nonstationarity, by estimating a confidence

In an earlier publicatiof2], we have introduced thiess interval for our test statistic, i.e., the loss of recurrence, in
P . k ) oo order to improve its statistical significance.
of recurrence 1 to estimate nonstationarity in a nonseg-

mented time series. The method is based on the analysis gE To deal with oversampled dataE l' rB]easonabIe correction
time distances between recurrences. The deviation of the diﬁ- hemes have already been prop - These methads,

tribution of these distances, ...from a distribution of dis- owever, are insufficient to correctly determine the statistical

hat i 4 und ) diti | significance of a given measure since they do not compre-
tancesdey, that is expecte under stationary conditions a'hensively consider the effects concerning correlated or re-
!OWS us to measure nonst.atlona.rlty. _In this contex}, a SySterHundant information for a statistical test. One way to esti-
is regarded as stationary if the time index of a neighbor of ate a reliable confidence interval is‘ 2 Monte Carlo
pointxis mdependgnt from that 0? For nonstationarity we imulation using a number of realizations of time series ob-
expect a deviation: a recurrence is more likely after a shor erved from a model system, another way is to measure a
time, when conditions do not yet have changed. We refer t(I)arge number of time series from the dynamical system to be
this phenomenon as loss of recurrence. As a measure for tlg

fudied. The first alternative is very time consuming and the
deviation between the observéf,..sand the expected dis- ' : . : L
tribUtion ey, We have proposed the medianof dmeas[2], second way requires stationarity. Furthermore, it might be

which is expected to b —0.5 for a stationary svstem impossible to repeat a measurement several times. Note that
IS exp Plexp="C- ary sy " the estimation of statistical fluctuations on the basis of de-
The significance level of the calculated mediageas was

o . . ! pendent variables is not only a problem for the loss of recur-
specified using the incomplete beta functisp(N/2,N rence, but is also inherent to other measurements.
This paper is organized as follows. In Sec. Il A we pro-
pose an extension to our methf#j to correctly estimate the
*Electronic address: christophrieke@yahoo.com significance of a measured value for nonstationarity that uses
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the Kolmogorov-Smirnov test to discriminate betwegR..s and 7 chosen appropriately. For each reference vegtor
and ¢eyp, In Sec. 1l B we discuss the statistical significance € V, let Uk(ir):{inir}izl,...k denote the set ok nearest vec-

of this test and its dependence on the correlation of vectortrs, with distance defined by the maximum notx,

and nearest neighbors in reconstructed state space. Further || ...=maX-o . m-1Xw+i.,~X+i.-- Let n, denote the time
more, we introduce a correction scheme and investigate ithdex of theith nearest neighbok; of the reference vector
dependence on the embedding parameters, on intrinsic P2- |n the case of stationarity, the time index of a nearest
rameters of our measure such as the number of nearest neighisighbom' is a priori independent from that of the reference
bors, and on charaqtenstlcs of the time series .s.uch_ as the et Iir:|nir_r| denote the time lag betweeh and itsith
autocorrelation functioiSecs. Il C and Ilj. The verification neighbor. Assuming time translation invariance the expect-
for stationary and linear processes and application to statior}j{ncy value of the mean time lag [ig]

ary and nonstationary model systems is given in Sec. |V,

where we demonstrate the generality of the correction E( ):N_(f-l)(N-f) 1)
scheme by applying it to the nonlinear local prediction error, 2 N-1

followed by a conclusion in Sec. V. . . . .
Following Ref.[4] we exclude neighboring vectors with

time lagsl less than or equal to the decorrelation timéet

II. METHODS oén (1) denote thea priori expected frequency distribution
of the time lagl, of the nearest neighbor under the assump-
A. Loss of recurrence tion that for a stationary system each vedxceptx, itself)

The reconstruction of a state space from an observed timeas the same probability to be found in the neighborhood of
series{x;;i=1,... M} is usually achieved by the time delay X;. The distribution functiorﬂ)Nyr,t(I):E:,:H dner(l’) is the
embedding[8] leading to a set om-dimensional vector¥  a priori probability that the observed mean time distance is
={X,;n=1, ... N} with X,=(Xq,Xnsrs - - Xnem-1)-)» With m  less than or equal tb

( |-t
_— if t<I<N-1-r; r<t
N-1-r-t
[ -t ) N-1
22— if t<I=<r; t<rs——-
N-2t-1 2
| —t+r-t . N-1
_— if r<IsN-1-r; t<r<——-
RO S ? @
N7 |-t , N-1
22— if t<I<sN-1-r; —<r<N-t-1
N-2t-1 2
|-t+N-r-1-t . N-1
if N-1-r<I<r; —<r<N-t-1
N-2t-1 2
[ -t
— if I<sN-1-r-t; r=N-t-1.
k r—t

Since shorter time distances are more likely than longereduced for largé, since the neighborhood &f depends on
ones, the frequency functiongy () are skewed left sided the time indexr, and the indices of the neighboring vectors
[cf. Fig. 1(@)], and thus the probability df<E(l,) is greater  {n}} are clustered around Thus, the observed time distances
than 0.5, i.e., @y, (E(l;))=0.5, even for time series with I, are on the average smaller than expected. This is also the
time lags distributed according iy (1). case for the transformed variablesince () is a strictly
~ In order to solve this problem we map the observed meamonotonic increasing function. The distribution of all trans-
time _d|stance to the mtervell_:[o,l] using the dlstrlbl_mon formed time lagsh,e.4) reflects thenonstationarity of the
function @y .«(1). For the stationary case, the .ran'ks, € thesystem in the sense that stationarity leads to a uniform dis-
transformed samplels=®y (1) are uniformly distributed in - ihytion, whereas for nonstationarity lower valued ofvill
| and independent oN and r, and the probability ofl, accumulate and therefore higher values are reduced. In order
=<0.5 is equal to 0.5 by constructioef. Fig. 1). For the to quantify this reduction, we calculated in RE2] the me-
nonstationary case the recurrence of state space vectorsd@n umeasOf dmeas The distributionspmeasand ¢ey, how-
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FIG. 1. (&) A priori expected frequency distributiongy (1)
and (b) distribution functions®y, (1), respectively, foN=10%, r
€{1,2000,7009 andt=100 under the assumption of a stationary
system.

ever, may differ even though,,..s matches the expected
medianue,=0.5. In this case, the median fails as a discrimi- z (arb.units)
nating statistic.

In order to improve the sensitivity for a deviation @f,eas
from ¢exp,We now use the well-known Kolmogorov-Smirnov

(KS) test. This statistic is defined as the maximum value of

the absolute difference between two cumulative distribution$!€r to enhance the proportion of false neighbors. Each strand
[here,® g) andd, 1) —T]' of successive pairs is identified by its initial pair.
1o mea exgd) =11 When analyzing the statistical dependencies of a set of
Dmeas™ m‘aﬁq)meag) - CDexp(T)|-
|

FIG. 2. Relation of neighboring vectors of two successive and
correlated reference vectoxs and X1 with X=(xq,x,).

3) reference vectors and their nearest neighbors, we are faced
with yet another type of dependencies: In the case of the loss
of recurrence, for instance, the set of hlltime distances

The significance level, i.e., the probability tHat>Dyeqs for - contains redundant information. These occur between recur-

L=N k independent samples is approximately given by rence times associated with successive reference pxgints

011 and X.., (see Fig. 2 but also more generally. Lek,
P*(Dmead :QKS({\L +0.12 +%}Dmeas), 4 =0 andL={1E, L 18 denote the sets of time dis-
VL tances between reference vectgrandx and their particu-
lar neighboring vectorsU,(X,)={X,t, ... X;x} and U(Xy
r r

:{ing, ,)?ng}, respectively. These sets contain redundant in-

formation, if X, and X; are close so that),(X,) and U,(Xy)

_ overlap. To minimize the redundancy we may choose inde-

B. Correction schemes pendent reference vectors1,t’,2t’,3t’,... oreven halve

The requirement of statistical independence of lall ~Or quarter the data. This preselection, however, might reduce
samples is not completely met for the set of transformedhe number of independent variables too much leading to an
variables{ll}=1 K " In particular, for oversampled data, sev- Msufficient sampling of the systems’ dynamics, which may
eral correcr:tiréh"s'lghemes have,been roposed. In [R];fa result in unforeseen problems and pitfalls. The correction

) . n prop SR . scheme proposed in Rg6], however, does not completely

decorrelation correctionfor computing the correlation di- . . . NV
mension was introduced by requiring a minimum time Iagcorrect redundant information to provide statistical indepen-

= ; : ) - dence of all time lags. In addition, there exists a mutual

between a reference and its neighboring vectors,. We . S X . .

. ) . neighborhood of a reference vectgr and its neighboring
refer to this scheme as reference-neigh{@N) correction. o N P i .
This correction scheme was further extended in R&f.to vectors, e.g., it Uk(x”'r)' thenl; is equal to'ﬂ‘r for one |
correlated neighboring vectoRs and X, of the same refer- €{1,... k. Thek+1 setsL,, Ly, ... Ly each consisting of
ence, which we refer to as neighbor-neighlfNiN) correc-  k time distances obtained fror and each neighboring vec-
tion. A time lagt for the correction schemes is often esti- torinie U.(X,) as reference, will altogether contain at lelast
mated using the autocorrelation function or the mutuaindependent time distances. In this case, including another
information [9]. The lagt could also be enlarged t6=t  neighbor would not provide additional information.
+(m-1)7 to ensure independent vector components leading In order to cope with redundant information within &ll
to an exclusion of neighboring vectors. Another correctiontime distances we here propose a correctioh tf approxi-
scheme was proposed infalse nearest strandsiethod[6] mate the number of the degrees of freedom of the statistical
to estimate an optimum embedding dimension. This schemist used in this study, i.e., the KS test. The maximum num-
minimizes redundant information in successive pairs of refber of all, not necessarily independent, time distancds is
erence and true neighbors due to temporal correlation in or=k N. Due to an overestimated number of degrees of free-

with the functionQus(\) =257, (-1)i"1e % (cf. Ref.[7],
and references thergin
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FIG. 3. Histograms of for time seriesM(1) (left column and M(10) (right column with k=4 neighboring vectors for embedding

dimensionan=1 andm=10 and different correction schemes. From top to bottdnwithout correction(2) with RN-correction, and3)
with RN and NN corrections.

dom, the empirical sizg of the discriminative statistic is space. The variance of the distributions increases with both
larger than the nominal size. As a lower bound for a cor- m and the ordeiQ of the M(Q) process caused by an in-

rected number of independent variables we propbgg  creased correlation of the variables. RN correction reduces
=L/(k+1)[t+(m-1)-7]. For the particular case of the KS the increased frequency in the first bin of the histogram par-

test, we therefore replace the number of degrees of freedo#ifularly for m=10 whereas the NN correction reduces the
L of the discriminative statistic bimn: P<S (Dmead. In this ~ Variance of the distributions. The effect of the latter is mar-

ginal for k=4 neighboring vectors, but becomes more pro-

nounced for an increased number of neighbors. In order to

quantify the influence of these correction schemes, we esti-

C. Investigation of dependencies of the significance on mated the empirical size using 1000 realizations of the
parameters processed!(1) and M(10) (cf. Table ).

. - Without any correction schemes, the empirical gizex-
In order to examine the statistics of the proposed test W@ oa4s the nominal sizer=0.09 for the KS tesiPES(D )
" mea:

use simple stati_onary stochastic time series. These Were 9€8ven for the Gaussian random prockid) with embedding
erated Qby moving average proces$dsQ) defined byX,  gimensionm=1. Furthermorep tends towards higher values
.:1/Q.Ei:17;n_i.wn.h Q=1and n-i denoting mdepe_ndent and \ith increasingm and increasing. Correction schemes re-
identically distributed Gaussian random variableg,i  gyce the empirical size, which, however, remains well
e Mk,0) with mean«=0 and standard deviation=1]. ~ jpoyeq. After correction of the number of variables g,
M(1) is the uncorrelated Gaussian random process. In thg,e empirical size tends to zerdp<10-3) which is mark-
following we set the time delay=1. . ~edly lower thana. Thus, the number of false rejections is
Figure 3 shows the influence of different correction giminished, the discriminative power, however, might be re-
schemes onpy.4l) for time seriesM(1) and M(10) with  duced as well. The numbér,;, is an estimation of a lower
N=10" data points, embedding dimensioms=1 andm=10  bound of the number of degrees of freedom leadingto
andk=4 neighboring vectors calculatétl) without any cor- =< «. The number of all variables=Nk on the other hand
rection scheme2) with NR correction(3) with NR and NN represents an estimation of the upper bound with an empiri-
corrections. In Fig. ®21) the frequency of short distances is cal sizep greater than or equal to the nominal size= «).
increased due to closeness of subsequent vectors in sta@e performance of the discriminative statistics is optimal

way the empirical size is smaller than the nominal size.
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TABLE |. Empirical sizep using the KS statistics at a nominal
size of =0.05 from 1000 realizations for each procds&l) and
M(10) with N=10%, embedding dimensiom=1 andm=10 andk
=5 nearest neighborg was estimated using different correction
schemes, i.e., without RN correctiéri=0) and with RN correction
(t"=20) as well as without and with NN-correction. The minimum

time lag oft’ =20 is greater than or equal to the sum of the embed-

ding dimension and the decorrelation time of tleprocess.

m 1 10
RN correction 0 20 0 20
NN correction 0 0 20 0 0 20
M(1) 0.13 0.151 0.134 0.811 0.817 0.808
M(10) 0.267 0.16 0.168 0.979 0.934 0.911

when the theoretical distribution @rEeSﬁ(Dmeag matches the
empirical distribution function®(Dea4, i-€., the empirical
size p matches the nominal siz&(p~= «). This requirement
defines the effective number of degrees of freedogy,
which we expect to satisflf i, <Lesr=<L.

D. Estimation of the effective number of degrees of freedom
Let

A Monte Carlo simulation allows us to estimate the effec-
tive number of degrees of freeddmgs;. In this way we fit the
theoretical distribution functioP{*(Dy,ead Of the KS test to
the empirical distribution functio®y(Dnead Of the Monte
Carlo simulation via the number of degrees of freedom

PHYSICAL REVIEW E 69, 046111(2004

0.01 :
1000

L

FIG. 4. DistanceD(L) between the empirical distribution of the
KS testdys(Dmead and the theoretical distribution function in de-
pendence on the number of degrees of freedomhe distribution
function @y (Dyead from (a) the M(1) process andb) the M(10)
process were estimated both with 200 realizations using embedding
dimensionsm=1 andm=10, k=4 nearest neighbors, ardi=10"
data points leading th=4x 10%.

Gt = L
1=
U Let

()

The distance of both distributions is defined similar to the

KS test by

D(L) = maX®ys(Dmead = Pl (Dimead]- (5)

meas

Finally we define an estimafeeff of the effective number
of degrees of freedorhg¢; by

D(Le) = min{D(L)}. ()
Figure 4 show®(L) for M(1) andM(10) time series with
N=10* and for embedding dimensions=1 andm=10. The

global minimumL¢; of D(L) depends on the autocorrelation
function of each process and more obviouslynarEstimates
of the global minimum are displayed in Table II.

Figure 5 confirms the closeness of the theoretical fre

guency functiorpLKS (Dmead Of the KS test with the empiri-

cal frequency distﬁfbutiomst(Dmea;.

In order to provide an approximatidn,=L.¢;, we focus
on the dependencies bf¢; on the embedding dimensian,
the number of neighboring vectoks and the decay of the
autocorrelation functiop(v) characterized by migv: p(v)

<p(0)/€?} as an appropriate value for the decorrelation time—19

t. Defining

we expectges; to be independent dfl sincelLgsocN.
ll. RESULTS

In order to examines(m,k,t) we estimatefesi=L/Le¢s
for 200 realizations each oM(Q) processes withQ
{1,2,5,10,20,50,1Q0 Furthermore we varied the em-
bedding dimensiorm:int(\E”) with n=1,...,14 and the
number of nearest neighboks 1,2,3,4 atN=10"

Figure 6 shows a selection of the estimated correction
factors@ess in dependence om. The results of these simu-
lations reflect the dependencies of the effective number of
degrees of freedorhgssoc 1/0e¢s ON t, m, andk. The follow-
ing simple relationship:

q(mKk,t) = 0.5 V(1 +Kk)(m? + 1), (8)

approximategsj.¢ which is indicated by linegk=1,2,4 in
Fig. 6. Equation(8) is chosen such thafim,k,t) = g, i.€.,

TABLE Il. Number of degrees of freedofty,, Let, andL.

I-min Leff L
M(1) M0 M(1) M(10 M)  M(10)
m=1 8000 800 29650 28030 40000 40000
800 421 8660 6580 40000 40000
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Dmeas 1

FIG. 5. Empirical frequency distributio“S(Dy,eqd Of 200 re-
alizations of theM(10) process estimated with=10*, m=10, and .
k=4 and the theoretical frequency functiopf§¥(L), pKkS(Le¢p), and
P we

the empirical size is less than or equal to the nominal size
(p<a). Note that even for thé(1) process at an embed-
ding dimension ofm=1 the estimated divisofs is >1.
This effect is due to a mutual neighborhood of the reference 1 ? s .
and its neighboring vectors, since each vector in state space 1 10 100
is an independent realization of (0, 1) process. This ap- M(50) m
proximation defines the approximated effective number of :
degrees of freedorh,=L/q(m,k,t).

As a verification of our ansafEq. (7)] we also estimated
the dependence af.;s onNe 5% 10%, ...,1C, which turned
out to be approximatively constant as expected. This remark- ©
able effect leads to the following conclusion: Although the
correction scheme proposég] is reasonable in a false near-
est neighbors method, identifying a strand of successive pairs .

of references and nearest neighbors by its initial pair does not 1 1 10 100
correct the number of degrees of freedom sufficiently. m

The decreasing length of strands with increadihis in aeff k= 1 + q(m,k,t) k= 1 —
contrast to the fact that the effective number of degrees of 2 X 2 -
freedom is proportional tiN. Instead, the approximation of 4 . 4
the number of degrees of freedom using a diviggf im- FIG. 6. Estimated divisof.¢; (Symbolg in dependence on the
proves the statistical significance for the measure such as ﬂé‘?‘nbedding dimensiom for different numbers of nearest neighbors
loss of recurrence. ke{l1,2,4 and different processega) M(1), (b) M(10), and(c)

M(50). Approximationg(m,k,t) of ge¢; using Eq.(8) added as dif-
ferent lines, solidk=1), dashedk=2), and dottedk=4).
IV. APPLICATION TO STATIONARY AND
NONSTATIONARY NONLINEAR MODEL SYSTEMS . .
b=0.2+(0.6/M)n (B3), respectively, withM=10F. We

Up to now we have demonstrated the statisticBgf,con  record the sunw,=u,+v,, subtract the running mean, and
stationary, linear stochastic processes. As a next step we witlormalize to running unit variance within an interval of 20

apply this method to nonlinear, stationary, and nonstationargata points.
model systems in order to validate its empirical size and, in As a second nonlinear deterministic model system, we

particular, to examine its discriminative power. examine the Lorenz systef1]:
The first nonlinear deterministic model is a generalization d
of the baker’s maygcf. Ref.[10]): d_X =aly-x),
t
Un+1 = bu,
if vp<a , " 9) d
Un1=Unf 8, d—)t/:rx—y—xz,

Un+1=0.5 +bu, (10)
Dma=(vn - /(1 -a). 9 _ bz (11)

In the following we takea=0.4. We obtain a stationary dt
system ifb=0.5 (B1), and two nonstationary systems by with a:10,b:§. For 25<r <90 this system exhibits chaotic
slowly varyingb according tob=0.4+(0.2/M)n (B2) and  behavior. We calculate data vectdps,y,z) for fixed time

if v,=a:
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1
Dmeas 1000 M(]_O)
¢
0.1
100 E
0.01
10 E
0.001
0 1
0.001 1
1
Dmeas 1000
0.1 ¢
100 E
0.01
10 E
0.001
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0.001 1
FIG. 7. DistanceD,¢55in dependence on the embedding dimen-
sionm with k=4 nearest neighbors am=10° data points, for one 1000 T r
realization of stationaryB1) and nonstationaryB2,B3) baker’s ¢
map (upper part and stationary(L1) and nonstationarylL2,L3) 100 L ]
Lorenz systenglower parj.
intervals of At=0.01. In the following, we will focus on the 10¢ 1
x-component{x,}. The stationary time series is generated
with r=25(L1) and the nonstationary time series are gener- (1)001 0.01 1

ated by slowly varying the parameter25+(25/M)n (L2) ’ Dineas
andr=25+(65/M)n (L3), respectively, foiM =10P.

First of all we choose an appropriate embedding dimen- FIG. 8. Empirical frequency distributiog*S(Ded of 500 re-
sion for the systems by analyzing the dependencBgf,s  alizations of theM(10) process withm=10, the stationary baker’s
onm (cf. Fig. 7). An insufficient embedding dimension leads map (B1) with m=6, and the stationary Lorenz systeinl) with
to false recurrences and thus distoaﬁ,%eafl) to a uniform m:24.all e;timated using=4 nearest neighbors and differer)t ob-
distribution. For stationary systenis,.,.is almost indepen-  S¢rvation t'meg\!zloﬁg N=10", andN=10" (steps. The theoretical

. - ._frequency functionp*S(L,) are depicted as different lines.
dent of m. Nonstationary systems exhibit a nonmonotonic 4

dependence ddyeas0n M. Alocal maximum ofDeasCan be  fidence interval. In contradt,,, underestimates the number
observed at values coinciding with the lower bound of em-of degrees of freedom.

bedding dimensions as suggested in R&f. For the Lorenz Figure 9 shows further that the distributions @f,,s at
systemD,,easincreases over a large rangerof N=10" for the nonstationary systems overlap widh,e,sfor

As a next parameter we investigate the observation timehe respective stationary system. A discrimination is impos-
by varying the number of data poinlt§ in order to examine sible. With increasing observation timB,,,sincreases for
the time scales of the dynamic. Figure 8 shows the empiricathe nonstationary systeniB2,B3,L2,L3) and decreases for
frequency distribution(D,ead for different stationary pro-  the respective stationary systéBil,L1). B3, for instance, is
cesses and systems at different observation times. For timgentified as nonstationary fdd=2x 10* using the confi-
series M(10) and B1, the empirical frequency function dence intervalCy 4(L).
matches the respective theoretical frequency function For the stationary Lorenz systelni, there is a significant
P*(Ly) with L, degrees of freedom. For thé(10) process,  deviation betweerpr(Dpead and ¢(Dpead. Furthermore,
#(Dmead Matches the theoretical fU”CtiQ]f atall investi- ¢, (L) is smaller than the mean @f(Dye.4 for all N. Thus,
gated observation timgsf. Fig. 8. Furthermore, our correc- |, overassesses the number of degrees of freedom, whereas
tion scheme is validated even for the stationary baker’'s mag, (L) appears to be more reliable. This could be attrib-
(B1). In Fig. 9 empirical distributionsp(Dyead are repre- yted to an insufficient observation time, although Fig. 9
sented by their mean and standard deviation. The confidenghows no convergence 6% 1(Lg) with u+20 of ¢(Dpead-
interval C,(L) of a one-sided test witk=0.1 and with cor-  On the other hand{ might be underestimated due to the
rected number of variable$Cy4(Ly) (lower lineg and finite number of data points used for the autocorrelation es-
Co 1(Lmin) (upper lineg] are also included. The empirical dis- timate.
tribution ¢(Dyead Of the stationary stochastic processes and In order to obtain a better estimate of the autocorrelation
the stationary baker’s map confir@ 4(L) as a reliable con-  functionp(») and thus ot we increased the observation time
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nonstationarity. Thus, in order to discriminate between sta-
tionary and nonstationary systems, both a reliable confidence
interval and an adequate observation time are required.

In the following we apply our proposed correction scheme
to the local nonlinear mean prediction erf@r(cf. Ref. [3]).
: ‘P represents the average over many individual erfgrand
T thus is likely to be Gaussian distributed. The empirical er-

0.001 = rors, however, are not expected to be independent, which
b 1 complicates the estimation of the variance ®f(cf. Ref.
[10]). Thus we use our correction scheme to improve its
D 0.1 estimation.

The mean prediction errd? is defined as the mean of the
set of all individual prediction error®, for each reference

0.001 &2 1
4 5 P=— P, 12
. 151 N 10 Noh g s (12)
D ¢ tg I 5 n CE where the individual error is the difference of the future of
0.1 \1*\ ] the reference and the future of its nearest neiglifqpr
H ] Xeh = X +h
0.01 w P, = | — ey (13)
0.001 = :
10 N 105 h denotes the prediction horizadhereh=20). The standard

deviation op of the frequency distribution of the indi-

FIG. 9. Diheasin dependence on the observation tib€in data vidual prediction errorP, is given by

pointy for (a) stochastic processed(1), M(10), and M(50); (b)

stationary(B1) and nonstationary baker’s map82 andB3), and 1 N-1-h
(c) stationary(L1) and nonstationaryL.2 andL3) Lorenz system. op=\|—— > P?-P2 (14)
Mean of ¢(Dy,ead @s points and @ in error bars, estimated from N-h 5 '

500 realizations with embedding parameters 10 (a), m=6 (b), ] o
andm=24 (c) with k=4 neighboring vectors. The confidence inter- ACCOfdlng to th? centr'al limit theorem, the me@ C_Jf L
val Co4(L) of the theoretical distributiong®S for L, and Ly, as independent variables is approximately Gaussian distributed

number of degrees of freedom at a significance leveD.1 for a  with standard deviationrp/\VL. We now defines as the

one-sided test is plotted as lines. relative error of the mean
up toN=10" (cf. Fig. 10. The differences between the esti- 5= 22 (15)
mates for different data lengtN reflect the effect of an in- PyL

sufficient observation time. The first zero crossing of the = o — )
autocorrelation function strongly depends NnEven atN ~ Which is the standard deviatiomp/\L normalized by the
=10, p(v) appears to be estimated incompletely. The ap/mean. The number of all individual errors iss(N-h)k.
proximated effective number of degrees of freeddm We use our correction scheme to improve the significance
=L/q(m,k,t) is thus overestimated, particularly at small ob-Of &. In order to verify the estimated and correctédwe
servation times sincedepends omN. The observed nonsta- simulate the standard deviation Bffrom 200 realizations
tionarity of the Lorenz systerbl is caused by an insufficient Of the stationary dynamical systems analyzed before

observation time and might be classified as measuremeBl '_Ll)- ) ]
Figure 11 shows a comparison &fobtained both from a

Monte Carlo simulation and from an estimation using,,

Ly andL as different numbers of degrees of freedom. When
compared to the Monte Carlo simulation, the relative error of
the means with L, degrees of freedom exhibits a reliable
estimate for the systef@1. The uncorrected relative error is

1 T T T T

pv)

001 E by far too low. For the systerhl, the number of degrees of
:‘ . o freedomL turned out to be overassessed, similar to the re-
0.001 Hl P 1 i . .
0 200 400 600 800 1000 1200 1400 sults for the loss of recurrence as discussed previously. For

the nonstationary systems we expect similar relative errors
when compared to the respective stationary system. The ab-

FIG. 10. Autocorrelation functiom(v) of the x component of ~ solute mean prediction err@, however, might be increased
the Lorenz system using different lengtNsof the time series. due to the change of the dynamics.

v
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BL) 005 : : have demonstrated the effects on different parameters, i.e.,
simulated relative error O the embedding dimension and the autocorrelation of a time
0.04 estimated relative error 1 series of the observed system. Furthermore, we have verified
0.03 T the statistical dependence of our correction scheme on the
© 0.02 - _ number of data points of the observed time series. A simple
recipe allows us to approximate this correction scheme in
0.01 ¢ %) %ﬁ order to provide a reliable confidence interval. The concept
0 of estimating the effective number of degrees of freedom for
10000 100000 a statistic of reference vectors and their neighboring vectors
L) . N . in reconstructed state space is, however, more general, which
simulated relative error O we exemplified using the local nonlinear prediction error as
0.8 - estimated relative error —e— - another measure.
06 | o - The reconstruction of the state space combined with a
w 04 b | nearest neighbor algorithm is a widespread concept in non-
’ linear time series analysis. Thus a corrected number of vari-
02 r T T 13 N ables as number of degrees of freedom improves the confi-
0 ? ¢ dence interval of the statistical fluctuations for other
10000 100000 nonlinear statistics. Finally, our method allows us to deter-
N mine a suitable observation time, to trace characteristic time

scales, and to quantify nonstationarity in observed systems.
FIG. 11. Relative statistical error of the nonlinear local predic- Fyrther studies are underway which apply our improved sta-
tion error in dependence on the number of data pdirfisr systems  jstical test to a variety of time series from different physical
(B1) and(L1). Errors § were calculated using 200 realizations of a models(see, e.g., Ref12]) and which aim to extent prelimi-
Mopte Carlo simula_ltion for each observation tir(@np_ty circles. nary findings obtained from experimental dgt&]. A crucial
Estimated erroré with L, degrees of freedorsolid circles and — yanendence on the observation time for detection of nonsta-
With L, respectivelyl as number of degrees of freedaeTror  jonarity of nonlinear model systems still remains, i.e., the
bars. observation time should be sufficient to cover all essential
time scales of the system.
V. CONCLUSION
We have discussed in detail the statistical significance of ACKNOWLEDGMENTS
our recently proposed technique for measuring nonstationar-
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[1] R. Hegger, H. Kantz, L. Matassini, and T. Schreiber, Phys. Cambridge, 1992

Rev. Lett. 84, 4092(2000. [8] F. Takens, irDynamical Systems and Turbuleneelited by D.

[2] C. Rieke, K. Sternickel, R. G. Andrzejak, C. E. Elger, P. A. Rand and L.-S. Young¢Springer-Verlag, Berlin, 1980Vol.
David, and K. Lehnertz, Phys. Rev. Le&8, 244102(2002. 898, pp. 366-381.

[3] H. Kantz and T. Schreibemonlinear Time Series Analysis [9] A. M. Fraser and H. L. Swinney, Phys. Rev. 83, 1134
(Cambridge University Press, Cambridge, 1997 (1986.

[4] J. Theiler, Phys. Rev. A4, 2427(1986. [10] T. Schreiber, Phys. Rev. Let¥8, 843(1997).

[5] J. Farmer and J. Sidorowich, Evolution, Learning and Cog- [11] E. Lorenz, J. Atmos. Sci20, 130 (1963.
nition, edited by Y.-C. Le€World Scientific, Singapore, 1989 [12] A. Witt, J. Kurths, and A. Pikovsky, Phys. Rev. &8, 1800

pp. 277-330. (1998.
(6] (I\g.olg.aKennel and H. D.I. Abarbanel, Phys. Rev.86, 026209 [13] C. Rieke, R. G. Andrzejak, F. Mormann, T. Kreuz, P. David, C.

E. Elger, and K. Lehnertz, IEEE Trans. Biomed. E&@, 634

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- (2003

nery, Numerical Recipes in @Cambridge University Press,

046111-9



